Interface  Description 

AbsoluteExternalPositionalAccuracy 
Closeness of reported coordinate values to values accepted as or being true.

AccuracyOfATimeMeasurement 
Correctness of the temporal references of an item (reporting of error in time measurement).

Completeness 
Presence and absence of features, their attributes and their relationships.

CompletenessCommission 
Excess data present in the dataset, as described by the scope.

CompletenessOmission 
Data absent from the dataset, as described by the scope.

ConceptualConsistency 
Adherence to rules of the conceptual schema.

ConformanceResult 
Information about the outcome of evaluating the obtained value (or set of values) against
a specified acceptable conformance quality level.

CoverageResult 
Result of a data quality measure organising the measured values as a coverage.

DataQuality 
Quality information for the data specified by a data quality scope.

DomainConsistency 
Adherence of values to the value domains.

Element 
Type of test applied to the data specified by a data quality scope.

FormatConsistency 
Degree to which data is stored in accordance with the physical structure of
the dataset, as described by the scope.

GriddedDataPositionalAccuracy 
Closeness of gridded data position values to values accepted as or being true.

LogicalConsistency 
Degree of adherence to logical rules of data structure, attribution and relationships (data
structure can be conceptual, logical or physical).

NonQuantitativeAttributeAccuracy 
Accuracy of nonquantitative attributes.

PositionalAccuracy 
Accuracy of the position of features.

QuantitativeAttributeAccuracy 
Accuracy of quantitative attributes.

QuantitativeResult 
Information about the value (or set of values) obtained from applying a data quality measure.

RelativeInternalPositionalAccuracy 
Closeness of the relative positions of features in the scope to their respective
relative positions accepted as or being true.

Result 
Base interface of more specific result classes.

Scope 
Description of the data specified by the scope.

TemporalAccuracy 
Accuracy of the temporal attributes and temporal relationships of features.

TemporalConsistency 
Correctness of ordered events or sequences, if reported.

TemporalValidity 
Validity of data specified by the scope with respect to time.

ThematicAccuracy 
Accuracy of quantitative attributes and the correctness of nonquantitative attributes
and of the classifications of features and their relationships.

ThematicClassificationCorrectness 
Comparison of the classes assigned to features or their attributes to a universe of discourse.

TopologicalConsistency 
Correctness of the explicitly encoded topological characteristics of the dataset as
described by the scope.

Usability 
Degree of adherence of a dataset to a specific set of user requirements.

Class  Description 

EvaluationMethodType 
Type of method for evaluating an identified data quality measure.

The parameters that define a coordinate reference system are chosen rather than measured to satisfy the degreesoffreedom problem in the changeover from observation to coordinate quantities. Coordinate reference systems are therefore by definition errorfree (i.e., nonstochastic). A coordinate reference system is realised through a network of control points. The coordinates of those control points, derived from surface and/or from satellite observations, are stochastic. Their accuracy can be expressed in a covariance matrix, which, due to the degreesoffreedom problem, will have a rank deficiency, described in geodetic literature.
Coordinate transformations between coordinate reference systems usually have parameter values derived from two sets of point coordinates, one set in system 1, the other set in system 2. As these coordinates are stochastic (i.e., have randomerror characteristics) the derived transformation parameter values will also be stochastic. Their covariance matrix can be calculated.
Coordinates that have not been "naturally" determined in coordinate reference system 2, but have been determined in coordinate system 1 and then transformed to system 2, have the random error effects of the transformation superimposed on their original error characteristics. It may be possible in wellcontrolled cases to calculate the covariance matrices of the point coordinates before and after the transformation, and thus isolate the effect of the transformation, but in practice a user will only be interested in the accuracy of the final transformed coordinates.
Nevertheless the option is offered to specify the covariance matrix of point coordinates resulting exclusively from the transformation. It is outside the scope of this specification to describe how that covariance matrix should be used. Because a covariance matrix is symmetrical, only the upper or lower diagonal part (including the main diagonal) needs to be specified.
For some transformations, this accuracy information is compacted in some assessment of an average impact on horizontal position and vertical position, allowing specification of average absolute accuracy and, when relevant and available, average relative accuracy. Hence separate quality measures may be specified for horizontal and for vertical position in those objects.
Copyright © 1994–2019 Open Geospatial Consortium. All rights reserved.